Knowledgeable Prompt-tuning:

Incorporating Knowledge into

Prompt Verbalizer for Text

Classification

Task

Source: Acl 2022

Advisor: JIA-LING KOH

Speaker: FAN-CHI-YU

Date:2023/12/12

Outline

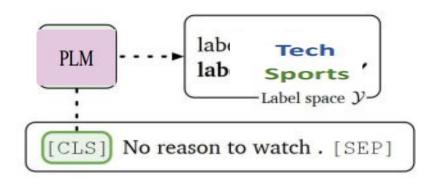
- Introduction
- Method
- Experiment
- Conclusion

Introduction

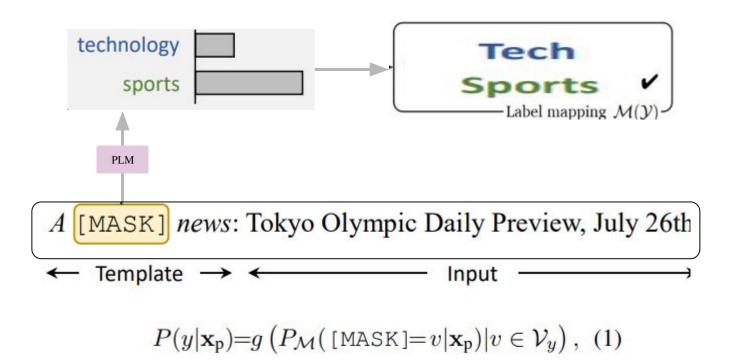
Introduction(Fine-tuning)

$$P(\cdot|x) = \text{Softmax}(F(\mathbf{h}_{\text{[CLS]}})). \tag{1}$$

The classifier and PLM are tuned by maximizing $\frac{1}{N} \sum_{i=1}^{N} \log P(y_i|x_i)$

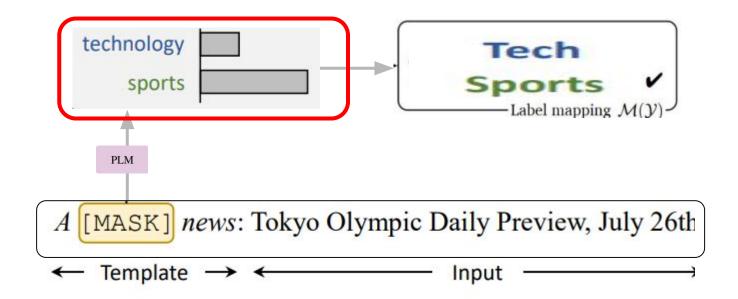


Introduction(Prompt Tuning)



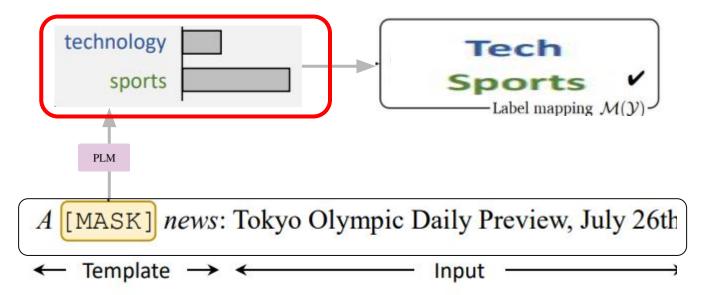
Introduction(Manual Verbalizer)

Defined by human with domain knowledge



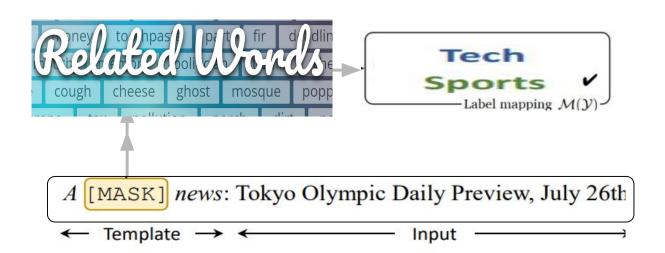
Introduction(Manual Verbalizer)

Because past handcraft have may lack coverage and hight variance to the result .



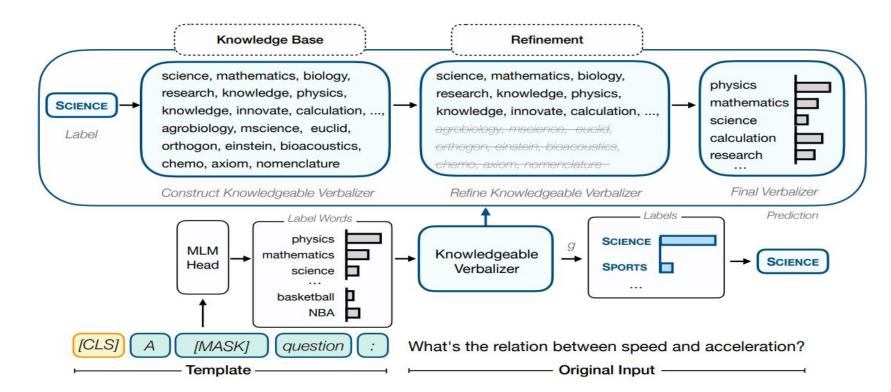
Introduction(Knowledgeable prompt-tuning)

We focus on **incorporating** external knowledge into the verbalizer



Method

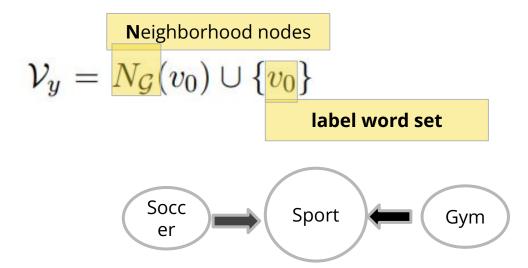
Method

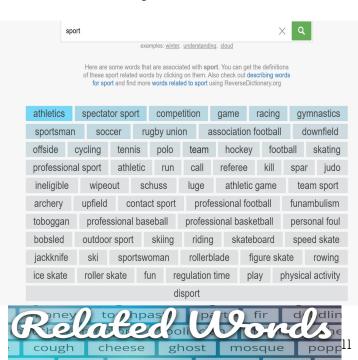


Verbalizer Construction

There is no standard correct answer, but **abundant** words may fit this

context.





Verbalizer Refine

Refine verbalizer, keep high-quality words, reduce noise.

1. Frequency Refinement

2. Relevance Refinement

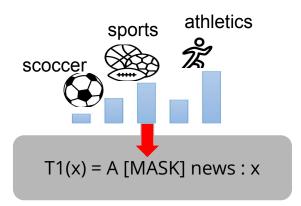
3. Contextualized Calibration

4. Learnable Refinement

Frequency Refinement

We propose to use **contextualized prior** of the label words to remove these words

$$P_{\mathcal{D}}(v) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} P_{\mathcal{M}}([MASK] = v | \mathbf{x}_{p}).$$
 (2)



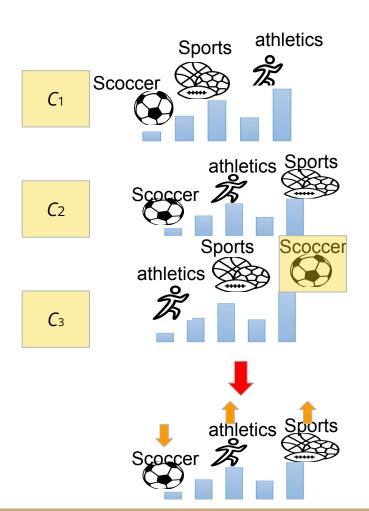
Frequency Refinement

We propose to use **contextualized prior** of the label words to remove these words

$$P_{\mathcal{D}}(v) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} P_{\mathcal{M}}([MASK] = v | \mathbf{x}_{p}).$$
 (2)

$$P_{\mathcal{D}}(v) \approx \frac{1}{|\tilde{\mathcal{C}}|} \sum_{\mathbf{x} \in \tilde{\mathcal{C}}} P_{\mathcal{M}}([MASK] = v | \mathbf{x}_p).$$
 (3)

unlabeled support set C



Frequency Refinement

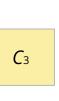
sports athletics

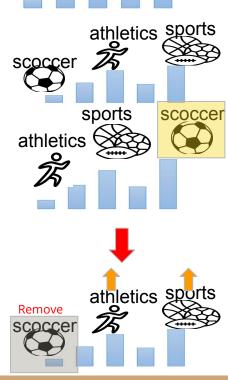
We filter the label words that appear in the **lower half** of the **contextualized prior** probability.

$$P_{\mathcal{D}}(v) = \mathbb{E}_{\mathbf{x} \sim \mathcal{D}} P_{\mathcal{M}}([MASK] = v | \mathbf{x}_{p}).$$
 (2)

$$P_{\mathcal{D}}(v) \approx \frac{1}{|\tilde{\mathcal{C}}|} \sum_{\mathbf{x} \in \tilde{\mathcal{C}}} P_{\mathcal{M}}([MASK] = v | \mathbf{x}_p).$$
 (3)

unlabeled support set C

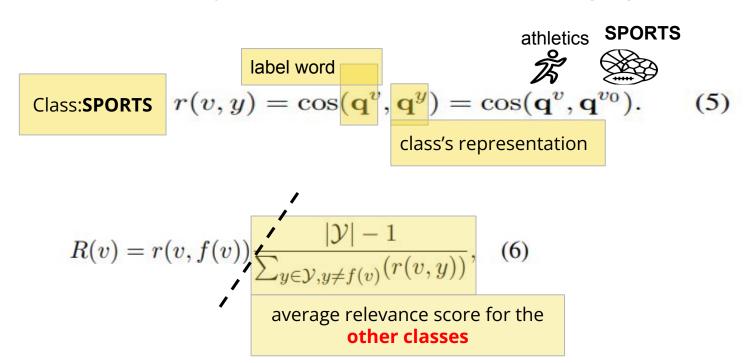




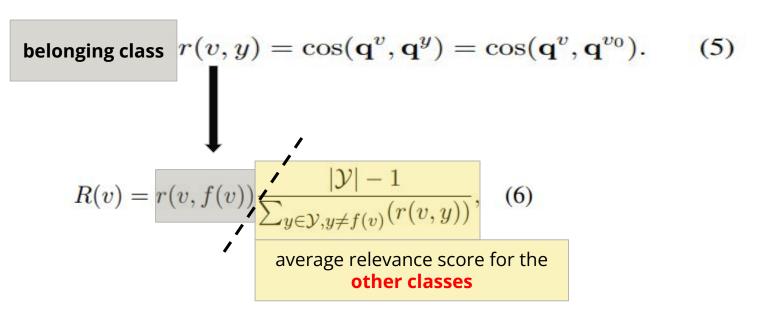
Label words may be more relevant to their **belonging class** than the **others**



Label words may be more relevant to their **belonging class** than the **others**



Label words may be more relevant to their **belonging class** than the **others**



Label words may be more relevant to their **belonging class** than the **others**If R(V)<1 we Remove it

belonging class
$$r(v, y) = \cos(\mathbf{q}^v, \mathbf{q}^y) = \cos(\mathbf{q}^v, \mathbf{q}^{v_0}).$$
 (5)

$$R(v) = r(v, f(v)) \\ \sum_{y \in \mathcal{Y}, y \neq f(v)} (r(v, y)) \text{ relevance score} \\ |\mathcal{Y}| - 1 \text{ belonging class} \\ \text{average relevance score for the} \\ \text{other classes} \\$$

Contextualized Calibration

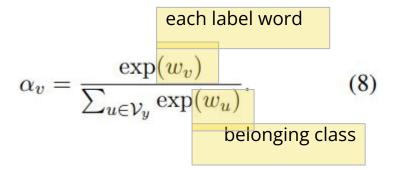
Before use the contextualized calibration (**CC**),KB tend to have more **diverse prior** probabilities(less likely to be predicted than the others).

$$\tilde{P}_{\mathcal{M}}([\text{MASK}]=v|\mathbf{x}_{p}) \propto \frac{P_{\mathcal{M}}([\text{MASK}]=v|\mathbf{x}_{p})}{P_{\mathcal{D}}(v)}$$
 (7)

prior probability of the label word.

Learnable Refinement

In **few-shot learning**, the refinement can be strengthen by a learning process.



Verbalizer Utilization

Mapping the predicted probability on each **refined label** word to the decision of the class label y

Average
$$\hat{y} = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \frac{\sum_{v \in \mathcal{V}_y} \tilde{P}_{\mathcal{M}}([\text{MASK}] = v | \mathbf{x}_p)}{|\mathcal{V}_y|}.$$
 (9)

Weighted Average
$$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} \frac{\exp(s(y|\mathbf{x}_p))}{\sum_{y'} \exp(s(y'|\mathbf{x}_p))},$$
 (10)

Weighted Average
$$s(y|\mathbf{x}_p) = \sum_{v \in \mathcal{V}_y} \alpha_v \log P_{\mathcal{M}}(\text{[MASK]} = v|\mathbf{x}_p).$$
 (11)

Verbalizer Utilization(Average)

Each label word of a class **contributes equally** to predicting the label.

$$\hat{y} = \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \frac{\sum_{v \in \mathcal{V}_y} \tilde{P}_{\mathcal{M}}([\text{MASK}] = v | \mathbf{x}_p)}{|\mathcal{V}_y| \quad \text{class}}$$
(9)

Verbalizer Utilization(Weighted Average)

Adopt a weighted average of label words' scores as the prediction score

Refinement Weights
$$s(y|\mathbf{x}_{p}) = \sum_{v \in \mathcal{V}_{u}} \log P_{\mathcal{M}}(\text{[MASK]} = v|\mathbf{x}_{p}). \quad (11)$$

$$\hat{y} = \operatorname{argmax}_{y \in \mathcal{Y}} \frac{\exp \left(s(y|\mathbf{x}_{p})\right)}{\sum_{y'} \exp \left(s(y'|\mathbf{x}_{p})\right)}, \quad (10)$$

Experiment

DataSet

Topic Classification

```
\mathcal{T}_1(x) = A \text{ [MASK] news: } x
\mathcal{T}_2(x) = x \text{ This topic is about [MASK].}
\mathcal{T}_3(x) = \text{[ Category : [MASK] ] } x
\mathcal{T}_4(x) = \text{[ Topic : [MASK] ] } x
```

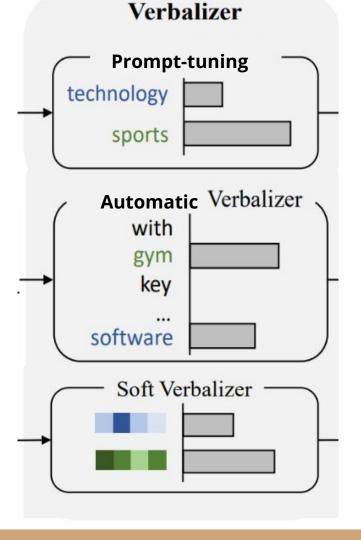
Name	Type	# Class	Test Size	
AG's News	Topic	4	7600	
DBPedia	Topic	14	70000	
Yahoo	Topic	10	60000	
Amazon	Sentiment	2	10000	
IMDB	Sentiment	2	25000	

Baselines

- 1. Prompt-tuning(**PT**)
 - a. Uses the class nameas the only label word for each class

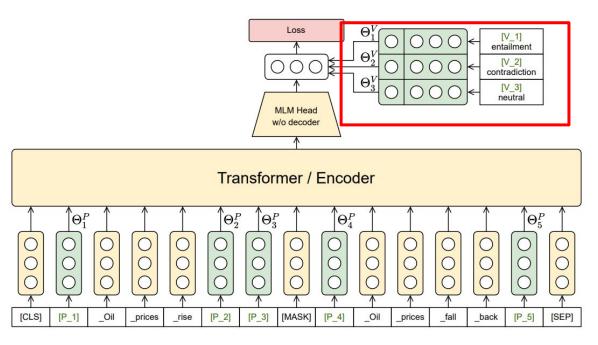
- 2. Automatic Verbalizer(**AUTO**)
 - a. Select the most informative label word

3. Soft Verbalizer(**SOFT**)



Soft Verbalizer(WARP)

Learn the **Verbalizer** in Embedding method



Zero Shot baseline

Method	AG's News	DBPedia	Yahoo	Amazon	IMDB accuracy
PT	$75.1 \pm 6.2 $ (79.0)	$66.6 \pm 2.3 (68.4)$	45.4 ± 7.0 (52.0)	$80.2 \pm 8.8 $ (87.8)	86.4 ± 4.0 (92.0)
PT+CC	79.9 ± 0.7 (81.0)	$73.9 \pm 4.9 $ (82.6)	$58.0 \pm 1.4 $ (58.8)	$91.4 \pm 1.6 $ (93.5)	$91.6 \pm 3.0 $ (93.7)
KPT	84.8 ± 1.2 (86.7)	82.2 ± 5.4 (87.4)	61.6 ± 2.2 (63.8)	92.8 ± 1.2 (94.6)	91.6 ± 2.7 (94.0)
-FR	82.7 ± 1.5 (85.0)	81.8 ± 4.6 (86.2)	60.9 ± 1.5 (62.7)	92.8 ± 1.2 (94.6)	$91.6 \pm 2.8 $ (94.1)
-RR	81.4 ± 1.5 (83.7)	$81.4 \pm 4.5 (85.8)$	60.1 ± 1.0 (61.4)	92.8 ± 1.2 (94.6)	$91.6 \pm 2.8 (94.1)$
-CC	$55.5 \pm 2.8 $ (58.3)	$64.5 \pm 6.8 (73.0)$	$42.4 \pm 5.0 $ (46.8)	$86.2 \pm 5.7 $ (92.5)	$90.3 \pm 2.8 (94.1)$

Few Shot baseline

Shot	Method	AG's News	DBPedia	Yahoo	Amazon	IMDB accuracy
	FT	19.8 ± 10.4	8.6 ± 4.5	11.1 ± 4.0	49.9 ± 0.2	50.0 ± 0.0
	PT	80.0 ± 6.0 (84.4)	$92.2 \pm 2.5 $ (94.3)	54.2 ± 3.1 (55.7)	91.9 ± 2.7 (93.2)	$91.2 \pm 3.7 $ (93.7)
	AUTO	52.8 ± 9.8 (57.6)	$63.0 \pm 8.9 $ (68.3)	23.3 ± 4.5 (25.0)	66.6 ± 12.5 (72.7)	75.5 ± 15.5 (83.1)
1	SOFT	80.0 ± 5.6 (82.4)	$92.3 \pm 2.3 $ (93.3)	54.3 ± 2.7 (55.9)	$90.9 \pm 5.8 $ (93.6)	$89.4 \pm 8.9 $ (93.1)
ř.	KPT	83.7 ± 3.5 (84.6)	93.7 ± 1.8 (95.3)	63.2 ± 2.5 (64.1)	93.2 ± 1.3 (93.9)	92.2 ± 3.0 (93.6)
	FT	37.9 ± 10.0	95.8 ± 1.3	25.3 ± 14.2	52.1 ± 1.3	51.4 ± 1.4
	PT	82.7 ± 2.7 (84.0)	$97.0 \pm 0.6 $ (97.3)	62.4 ± 1.7 (63.9)	$92.2 \pm 3.3 (93.5)$	91.9 ± 3.1 (92.7)
	AUTO	72.2 ± 10.1 (75.6)	$88.8 \pm 3.9 $ (91.5)	49.6 ± 4.3 (51.2)	87.5 ± 7.4 (90.8)	86.8 ± 10.1 (92.1)
5	SOFT	82.8 ± 2.7 (84.3)	97.0 ± 0.6 (97.2)	61.8 ± 1.8 (63.1)	$93.2 \pm 1.6 $ (94.2)	$91.6 \pm 3.4 $ (93.9)
*	KPT	85.0 ± 1.2 (85.9)	97.1 ± 0.4 (97.3)	67.2 ± 0.8 (67.8)	93.4 ± 1.9 (94.1)	92.7 ± 1.5 (92.9)
	FT	75.9 ± 8.4	93.8 ± 2.2	43.8 ± 17.9	83.0 ± 7.0	76.2 ± 8.7
	PT	84.9 ± 2.4 (86.1)	97.6 ± 0.4 (97.8)	64.3 ± 2.2 (64.8)	$93.9 \pm 1.3 $ (94.6)	93.0 ± 1.7 (94.0)
	AUTO	81.4 ± 3.8 (84.1)	91.5 ± 3.4 (95.1)	58.7 ± 3.1 (60.9)	$93.7 \pm 1.2 $ (94.5)	91.1 ± 5.1 (93.3)
10	SOFT	$85.0 \pm 2.8 (86.7)$	97.6 ± 0.4 (97.8)	$64.5 \pm 2.2 (65.0)$	$93.9 \pm 1.7 $ (93.9)	$91.8 \pm 2.6 $ (93.0)
	KPT	86.3 ± 1.6 (87.0)	98.0 ± 0.2 (98.1)	68.0 ± 0.6 (68.2)	93.8 ± 1.2 (94.1)	92.9 ± 1.8 (93.3)
	FT	85.4 ± 1.8	97.9 ± 0.2	54.2 ± 18.1	71.4 ± 4.3	78.5 ± 10.1
	PT	$86.5 \pm 1.6 (87.0)$	$97.9 \pm 0.3 (98.1)$	67.2 ± 1.1 (67.5)	93.5 ± 1.0 (94.4)	93.0 ± 1.1 (93.6)
	AUTO	$85.7 \pm 1.4 (86.1)$	92.2 ± 2.7 (94.9)	65.0 ± 1.8 (66.9)	93.9 ± 1.1 (94.1)	92.8 ± 2.0 (94.0)
20	SOFT	86.4 ± 1.7 (87.1)	98.0 ± 0.3 (98.1)	$67.4 \pm 0.7 (67.5)$	93.8 ± 1.6 (94.2)	93.5 ± 0.9 (94.0)
20	KPT	87.2 ± 0.8 (87.5)	98.1 ± 0.3 (98.2)	68.9 ± 0.8 (69.3)	93.7 ± 1.6 (94.4)	93.1 ± 1.1 (93.5)

Few Shot baseline

Shot	Method	AG's News	DBPedia	Yahoo	Amazon	IMDB	accuracy
	KPT	83.7 ± 3.5 (84.6)	$93.7 \pm 1.8 $ (95.3)	63.2 ± 2.5 (64.	1) $93.2 \pm 1.3 (93.9)$	92.2 ± 3.0 (93.6)
	- LR	83.5 ± 3.8 (84.3)	93.0 ± 1.8 (94.5)	62.2 ± 2.9 (63.	6) 93.3 ± 1.3 (93.9)	92.2 ± 2.8 (93.6)
1	- RR	82.2 ± 3.2 (82.6)	$92.9 \pm 1.8 $ (94.1)	61.3 ± 4.2 (62.	5) 93.1 ± 1.5 (93.7)	92.6 ± 1.7 (93.6)
	- RR - LR	$81.8 \pm 3.3 (82.5)$	91.3 ± 1.7 (92.6)	60.7 ± 4.2 (61.	4) $93.2 \pm 1.5 $ (93.9)	92.6 ± 1.5 (93.5)
	KPT	85.0 ± 1.2 (85.9)	97.1 ± 0.4 (97.3)	67.2 ± 0.8 (67.3	3) 93.4 ± 1.9 (94.1)	92.7 ± 1.5 (92	2.9)
	- LR	85.1 ± 1.0 (85.8)	97.1 ± 0.4 (97.2)	67.0 ± 1.1 (67.5	93.4 ± 1.9 (94.1)	92.8 ± 1.5 (93	.0)
	- RR	84.3 ± 1.8 (84.9)	97.2 ± 0.4 (97.3)	67.2 ± 0.8 (67.3	93.6 ± 1.4 (94.1)	93.0 ± 2.0 (93	(.8)
5	- RR - LR	84.2 ± 1.7 (84.5)	$97.1 \pm 0.4 $ (97.3)	66.6 ± 1.4 (67.5)	$93.4 \pm 2.0 \ (94.1)$	93.0 ± 2.1 (93	(.8)
	KPT	86.3 ± 1.6 (87.0)	98.0 ± 0.2 (98.1)	68.0 ± 0.6 (68.2)	$93.8 \pm 1.2 (94.1)$	92.9 ± 1.8 (93	1.3)
	- LR	85.9 ± 1.9 (87.1)	98.0 ± 0.2 (98.1)	67.9 ± 0.7 (68.3)	2) 93.9 ± 1.1 (94.1)	93.0 ± 1.7 (93	(.2)
10	- RR	85.6 ± 1.4 (86.2)	97.9 ± 0.2 (98.0)	67.5 ± 1.1 (68.1	$94.0 \pm 1.0 \ (94.7)$	92.7 ± 2.1 (93	(0.0)
10	- RR - LR	85.1 ± 1.4 (86.0)	$97.8 \pm 0.2 $ (97.8)	66.8 ± 1.1 (67.6	94.1 ± 0.9 (94.8)	93.0 ± 2.0 (93	1.4)
	KPT	87.2 ± 0.8 (87.5)	98.1 ± 0.3 (98.2)	68.9 ± 0.8 (69.3)	$93.7 \pm 1.6 \ (94.4)$	93.1 ± 1.1 (93	1.5)
	- LR	87.7 ± 0.6 (87.8)	98.1 ± 0.3 (98.2)	68.8 ± 0.9 (69.8	3) 93.4 ± 2.3 (94.3)	93.4 ± 0.9 (93	(.6)
203	- RR	87.3 ± 0.8 (87.5)	98.1 ± 0.3 (98.2)	68.8 ± 0.9 (68.9)	93.6 \pm 1.3 (94.2)	93.1 ± 0.8 (93	.6)
20	- RR - LR		98.1 ± 0.3 (98.2)			93.1 ± 0.8 (93	

Handle the OOV Label Words(out-of-vocabulary)

The knowledgeable verbalizer is expanded using external resources

Average of each token in the single token [Mask]

Shot	Method	AG's News	DBPedia	Yahoo	Amazon	IMDB accuracy
0	KPT + ST	84.9 ↑± 1.0 (86.3)	81.0 ± 4.3 (85.2)	62.7 ↑± 1.1 (64.4)	92.8 ± 1.2 (94.7)	91.5 ± 2.8 (94.1)
1	KPT + ST	$83.4 \pm 3.9 $ (84.2)	$94.0 \uparrow \pm 1.8 $ (95.8)	$62.5 \pm 2.3 (63.5)$	93.3 ↑± 1.4 (94.1)	92.1 \pm 3.5 (93.6)
5	KPT + ST	$84.7 \pm 1.8 (85.4)$	$97.1 \pm 0.5 $ (97.2)	$66.8 \pm 1.0 (67.3)$	93.3 \pm 2.1 (93.8)	93.1 ↑± 1.4 (93.3)
10	KPT + ST	$86.3 \pm 1.5 (86.8)$	$98.0 \pm 0.2 $ (98.1)	$67.6 \pm 0.9 $ (67.9)	$94.0 \uparrow \pm 1.0 (94.1)$	$92.7 \pm 1.8 $ (93.6)
20	KPT + ST	87.2 ± 1.1 (87.6)	$97.9 \pm 0.4 $ (98.1)	$68.6 \pm 0.7 $ (69.1)	93.5 \(\pm \pm 1.8 \) (94.0)	$92.9 \pm 1.2 $ (93.4)

-

Conclusion

Conclusion

 Propose KPT , which expands the verbalizer in prompt-tuning using the external KB.

2. Better utilize the KB, we propose refinement methods for the knowledgeable.

Open questions

1. Better approaches for combining KB and prompt-tuning in terms of template construction and verbalizer design.

2. Incorporating external knowledge into prompt-tuning for other tasks such as text generation.